บทที่ 3 คลื่นแม่เหล็กไฟฟ้า





คลื่นแม่เหล็กไฟฟ้า






คลื่นแม่เหล็กไฟฟ้า เกิดจากการรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการทำให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ามีการเปลี่ยนแปลงจะเหนี่ยวนำให้เกิดสนามแม่เหล็ก หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้า
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นในแนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น
คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลาง จึงสามารถเคลื่อนที่ในสุญญากาศได้
สเปกตรัม (Spectrum) ของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้น
ดังนั้นคลื่นแม่เหล็กไฟฟ้า จึงมีประโยชน์มากในการสื่อสารและโทรคมนาคม และทางการแพทย์



สมบัติของคลื่นแม่เหล็กไฟฟ้า
1. ไม่ต้องใช้ตัวกลางในการเคลื่อนที่
2. อัตราเร็วของคลื่นแม่เหล็กไฟฟ้าทุกชนิดในสุญญากาศเท่ากับ 3x108m/s ซึ่งเท่ากับ อัตราเร็วของแสง
3. เป็นคลื่นตามขวาง
4. ถ่ายเทพลังงานจากที่หนึ่งไปอีกที่หนึ่ง
5. ถูกปล่อยออกมาและถูกดูดกลืนได้โดยสสาร
6. ไม่มีประจุไฟฟ้า
7. คลื่นสามารถแทรกสอด สะท้อน หักเห และเลี้ยวเบนได้



1. คลื่นวิทยุ
คลื่นวิทยุมีความถี่ช่วง 104 - 109 Hz( เฮิรตซ์ ) ใช้ในการสื่อสาร คลื่นวิทยุมีการส่งสัญญาณ ระบบคือ
1.1 ระบบเอเอ็ม (A.M. = amplitude modulation)
ระบบเอเอ็ม มีช่วงความถี่ 530 - 1600 kHz( กิโลเฮิรตซ์ ) สื่อสารโดยใช้คลื่นเสียงผสมเข้าไปกับคลื่นวิทยุเรียกว่า "คลื่นพาหะโดยแอมพลิจูดของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง
ในการส่งคลื่นระบบ A.M. สามารถส่งคลื่นได้ทั้งคลื่นดินเป็นคลื่นที่เคลื่อนที่ในแนวเส้นตรงขนานกับผิวโลกและคลื่นฟ้าโดยคลื่นจะไปสะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แล้วสะท้อนกลับลงมา จึงไม่ต้องใช้สายอากาศตั้งสูงรับ
1.2 ระบบเอฟเอ็ม (F.M. = frequency modulation)
ระบบเอฟเอ็ม มีช่วงความถี่ 88 - 108 MHz (เมกะเฮิรตซ์) สื่อสารโดยใช้คลื่นเสียงผสมเข้ากับคลื่นพาหะ โดยความถี่ของคลื่นพาหะจะเปลี่ยนแปลงตามสัญญาณคลื่นเสียง
ในการส่งคลื่นระบบ F.M. ส่งคลื่นได้เฉพาะคลื่นดินอย่างเดียว ถ้าต้องการส่งให้คลุมพื้นที่ต้องมีสถานีถ่ายทอดและเครื่องรับต้องตั้งเสาอากาศสูง ๆ รับ



2. คลื่นโทรทัศน์และไมโครเวฟ
คลื่นโทรทัศน์และไมโครเวฟมีความถี่ช่วง 108 - 1012 Hz มีประโยชน์ในการสื่อสาร แต่จะไม่สะท้อนที่ชั้นบรรยากาศไอโอโนสเฟียร์ แต่จะทะลุผ่านชั้นบรรยากาศไปนอกโลก ในการถ่ายทอดสัญญาณโทรทัศน์จะต้องมีสถานีถ่ายทอดเป็นระยะ ๆ เพราะสัญญาณเดินทางเป็นเส้นตรง และผิวโลกมีความโค้ง ดังนั้นสัญญาณจึงไปได้ไกลสุดเพียงประมาณ 80 กิโลเมตรบนผิวโลก อาจใช้ไมโครเวฟนำสัญญาณจากสถานีส่งไปยังดาวเทียม แล้วให้ดาวเทียมนำสัญญาณส่งต่อไปยังสถานีรับที่อยู่ไกล ๆ
เนื่องจากไมโครเวฟจะสะท้อนกับผิวโลหะได้ดี จึงนำไปใช้ประโยชน์ในการตรวจหาตำแหน่งของอากาศยาน เรียกอุปกรณ์ดังกล่าวว่า เรดาร์ โดยส่งสัญญาณไมโครเวฟออกไปกระทบอากาศยาน และรับคลื่นที่สะท้อนกลับจากอากาศยาน ทำให้ทราบระยะห่างระหว่างอากาศยานกับแหล่งส่งสัญญาณไมโครเวฟได้




3. รังสีอินฟาเรด (infrared rays)
รังสีอินฟาเรดมีช่วงความถี่ 1011 - 1014 Hz หรือความยาวคลื่นตั้งแต่ 10-3 - 10-6 เมตร ซึ่งมีช่วงความถี่คาบเกี่ยวกับไมโครเวฟ รังสีอินฟาเรดสามารถใช้กับฟิล์มถ่ายรูปบางชนิดได้ และใช้เป็นการควบคุมระยะไกลหรือรีโมทคอนโทรลกับเครื่องรับโทรทัศน์ได้





4.
 แสง (light)
แสงมีช่วงความถี่ 1014Hz หรือความยาวคลื่น 4x10-7 - 7x10-7 เมตร เป็นคลื่นแม่เหล็กไฟฟ้าที่ประสาทตาของมนุษย์รับได้ สเปคตรัมของแสงสามารถแยกได้ดังนี้
สี
ความยาวคลื่น (nm)
ม่วง
380-450
น้ำเงิน
450-500
เขียว
500-570
เหลือง
570-590
แสด
590-610
แดง
610-760





5. รังสีอัลตราไวโอเลต (Ultraviolet rays)
รังสีอัลตราไวโอเลต หรือ รังสีเหนือม่วง มีความถี่ช่วง 1015 - 1018 Hz เป็นรังสีตามธรรมชาติส่วนใหญ่มาจากการแผ่รังสีของดวงอาทิตย์ ซึ่งทำให้เกิดประจุอิสระและไอออนในบรรยากาศชั้นไอโอโนสเฟียร์ รังสีอัลตราไวโอเลต สามารถทำให้เชื้อโรคบางชนิดตายได้ แต่มีอันตรายต่อผิวหนังและตาคน




6.
 รังสีเอกซ์ (X-rays)
รังสีเอกซ์ มีความถี่ช่วง 1016 - 1022 Hz มีความยาวคลื่นระหว่าง 10-8 - 10-13 เมตร ซึ่งสามารถทะลุสิ่งกีดขวางหนา ๆ ได้ หลักการสร้างรังสีเอกซ์คือ การเปลี่ยนความเร็วของอิเล็กตรอน มีประโยชน์ทางการแพทย์ในการตรวจดูความผิดปกติของอวัยวะภายในร่างกาย ในวงการอุตสาหกรรมใช้ในการตรวจหารอยร้าวภายในชิ้นส่วนโลหะขนาดใหญ่ ใช้ตรวจหาอาวุธปืนหรือระเบิดในกระเป๋าเดินทาง และศึกษาการจัดเรียงตัวของอะตอมในผลึก





7.
 รังสีแกมมา (-rays)
รังสีแกมมามีสภาพเป็นกลางทางไฟฟ้ามีความถี่สูงกว่ารังสีเอกซ์ เป็นคลื่นแม่เหล็กไฟฟ้าที่เกิดจากปฏิกิริยานิวเคลียร์และสามารถกระตุ้นปฏิกิริยานิวเคลียร์ได้ มีอำนาจทะลุทะลวงสูง



คลื่นแม่เหล็กไฟฟ้า (Electromagnetic Radiation)
คลื่นแม่เหล็กไฟฟ้าเป็นรูปแบบหนึ่งการถ่ายเทพลังงาน จากแหล่งที่มีพลังงานสูงแผ่รังสีออกไปรอบๆ โดยมีคุณสมบัติที่เกี่ยวข้องกับคลื่นแม่เหล็กไฟฟ้า คือ ความยาวคลื่น (l) โดยอาจวัดเป็น nanometer (nm) หรือ micrometer (mm) และ ความถี่คลื่น (f) ซึ่งจะวัดเป็น hertz (Hz) โดยคุณสมบัติทั้งสองมีความสัมพันธ์ผ่านค่าความเร็วแสง ในรูป c = fl






พลังงานของคลื่น พิจารณาเป็นความเข้มของกำลังงาน หรือฟลักซ์ของการแผ่รังสี (มีหน่วยเป็น พลังงานต่อหน่วยเวลาต่อหน่วยพื้นที่ = Joule s-1 m-2 = watt m-2) ซึ่งอาจวัดจากความเข้มที่เปล่งออกมา (radiance) หรือความเข้มที่ตกกระทบ (irradiance)



จากภาพเป็นการแสดงช่วงความยาวคลื่นของคลื่นแม่เหล็กไฟฟ้า ซึ่งเครื่องมือวัด (Sensor) ของดาวเทียมหรืออุปกรณ์ตรวจวัดจะออกแบบมาให้เหมาะสมกับช่วงความยาวของคลื่นแม่เหล็กไฟฟ้าในช่วงคลื่นต่างกัน เช่น
  • ช่วงรังสีแกมมา (gamma ray : l < 0.1 nm) และช่วงรังสีเอ็กซ์ (x-ray : 0.1 nm < l < 300 nm) เป็นช่วงที่มีพลังงานสูง แผ่รังสีจากปฏิกิริยานิวเคลียร์ หรือจากสารกัมมันตรังสี
  • ช่วงอัลตราไวโอเลต เป็นช่วงที่มีพลังงานสูง เป็นอันตรายต่อเซลสิ่งมีชีวิต
  • ช่วงคลื่นแสง เป็นช่วงคลื่นที่ตามนุษย์รับรู้ได้ ประกอบด้วยแสงสีม่วง ไล่ลงมาจนถึงแสงสีแดง
  • ช่วงอินฟราเรด เป็นช่วงคลื่นที่มีพลังงานต่ำ ตามนุษย์มองไม่เห็น จำแนกออกเป็น อินฟราเรดคลื่นสั้น และอินฟราเรดคลื่นความร้อน





ความสัมพันธ์ระหว่าง ความยาวคลื่น (Wavelength) และ ความถี่ (Frequency)
          วัตถุทุกชนิดที่มีอุณภูมิสูงกว่า 0 เคลวิน (-273°C) มีพลังงานภายในตัว และมีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า ความยาวของคลื่นแม่เหล็กไฟฟ้าแปรผกผันกับอุณหภูมิ มิใช่มีเพียงสิ่งที่มีอุณหภูมิสูง ดังเช่น ดวงอาทิตย์ และไส้หลอดไฟฟ้า จึงมีการแผ่รังสี หากแต่สิ่งที่มีอุณหภูมิต่ำดังเช่น ร่างกายมนุษย์ และน้ำแข็ง ก็มีการแผ่รังสีเช่นกัน เพียงแต่ตาของเรามองไม่เห็น
          พิจารณาภาพที่ 4 เมื่อเราให้พลังงานความความร้อนแก่แท่งโลหะ เมื่อมันเริ่มร้อน มันจะเปล่งแสงสีแดง (สามารถเห็นได้จากขดลวดของเตาไฟฟ้า) เมื่อมันร้อนมากขึ้น มันจะเปล่งแสงสีเหลือง และในที่สุดมันจะเปล่งแสงสีขาวอมน้ำเงิน

          พิจารณาเส้นกราฟ จะเห็นว่า
เมื่อแท่งโลหะมีอุณหภูมิ 3,000 K ความยาวคลื่นสูงสุดที่ยอดกราฟจะอยู่ที่ 1000 nm (นาโนเมตร) ซึ่งตรงกับย่านรังสีอินฟราเรด ซึ่งสายตาเราไม่สามารถมองเห็นรังสีชนิดนี้ เราจึงเห็นแท่งโลหะแผ่แสงสีแดง เนื่องจากเป็นความยาวคลื่นที่ต่ำที่สุดแล้ว ที่เราสามารถมองเห็นได้
เมื่อแท่งโลหะมีอุณหภูมิ 5,000 K ความยาวคลื่นสูงสุดที่ยอดกราฟจะอยู่ที่ 580 nm เราจึงมองเห็นแท่งโลหะเปล่งแสงสีเหลือง
เมื่อแท่งโลหะมีอุณหภูมิ 10,000 K ความยาวคลื่นสูงสุดที่ยอดกราฟจะอยู่ที่ 290 nm ซึ่งตรงกับย่านรังสี อุลตราไวโอเล็ก ซึ่งสายตาเราไม่สามารถมองเห็นรังสีชนิดนี้ เราจึงเห็นแท่งโลหะแผ่แสงสีม่วง เนื่องจากเป็นความยาวคลื่นที่สูงที่สุดแล้ว ที่เราสามารถมองเห็นได้

ภาพที่ 4 ความสัมพันธ์ระหว่างความยาวคลื่นกับอุณหภูมิ
          ตัวอย่างนี้แสดงให้เห็นว่า วัตถุร้อน มีพลังงานสูง และแผ่รังสีคลื่นสั้น ส่วนวัตถุเย็น มีพลังงานต่ำ แผ่รังสีคลื่นยาว




กฎของเวน (Wien’s Law): ความสัมพันธ์ระหว่างความยาวคลื่น และอุณหภูมิ


           วัตถุทุกชนิดที่มีอุณภูมิสูงกว่า 0 เคลวิน (-273°C) ย่อมมีพลังงานภายในตัว และมีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า ความยาวของคลื่นแม่เหล็กไฟฟ้าแปรผกผันกับอุณหภูมิ (วัตถุร้อน มีพลังงานสูง และแผ่รังสีคลื่นสั้น, วัตถุเย็น มีพลังงานต่ำ แผ่รังสีคลื่นยาว)
 ในปี ค.ศ.1893 นักฟิสิกส์ชาวเยอรมันชื่อ วิลเฮล์ม เวน (Wilhelm Wien) ได้ค้นพบความสัมพันธ์ระหว่างคลื่นแม่เหล็กไฟฟ้าและความร้อน
max = 0.0029 / T
                 max      = ความยาวคลื่นเข้มสุด มีหน่วยเป็นเมตร (m)
              T           = อุณหภูมิของวัตถุ มีหน่วยเป็นเคลวิน (K)
           ตัวอย่างที่ 1 แสดงให้เห็นว่า เราสามารถคำนวณหาอุณหภูมิพื้นผิวของดาวได้ ถ้าเราทราบความยาวคลื่นเข้มสุด ที่ดาวนั้นแผ่รังสีออกมา
ตัวอย่างที่ 1: ดวงอาทิตย์แผ่รังสีที่มีความยาวคลื่นเข้มสุด 500 นาโนเมตร อยากทราบว่า ดวงอาทิตย์มีอุณหภูมิพื้นผิวเท่าไร
         max   = 0.0029 / T
           T      = 0.0029 / max
                  = 0.0029 / 500 x 10-9 m
                  = 5,800 K






กฎของแพลงก์ (Plank’s Law)

          
โฟตอนเป็นอนุภาคของแสง เคลื่อนที่ด้วยความเร็ว 300,000,000 เมตร/วินาที พลังงานของโฟตอนแปรผันตามความถี่ แต่แปรผกผันกับความยาวคลื่น โฟตอนของคลื่นสั้นมีพลังงานมากกว่าโฟตอนของคลื่นยาว
E = hf
E = hc
          พลังงานของโฟตอน    = h x ความถี่
                                       = h x ความเร็วแสง / ความยาวคลื่น
     ความยาวคลื่น () = ระยะห่างระหว่างยอดคลื่น มีหน่วยเป็นเมตร (m)
     ความถี่ (f) = จำนวนคลื่นที่เคลื่อนที่ผ่านจุดที่กำหนด ในระยะเวลา 1 วินาที มีหน่วยเป็นเฮิรทซ์ (Hz)
     ค่าคงที่ของแพลงก์ (h) = 6.6 x 10-34 จูล วินาที (J.s)
          ตัวอย่างที่ 3 แสดงให้เห็นว่า โฟตอนของแสงสีม่วงซึ่งมีความยาวคลื่น 400 นาโนเมตร มีพลังงานสูงกว่า โฟตอนของแสงสีแดงซึ่งมีความยาวคลื่น 700 นาโนเมตร ถึง 1.75 เท่า
ตัวอย่างที่ 2: โฟตอนของแสงสีม่วงมีความยาวคลื่น 400 นาโนเมตร โฟตอนของแสงสีแดงมีความยาวคลื่น 700 นาโนเมตร โฟตอนทั้งสองมีพลังงานต่างกันอย่างไร
Eviolet = hc / = [6.6 x 10-34 J.s] [3 x 108 m s-1M / 400 x 10-9 nm
       = 4.95 x 10-19 จูล
Ered   = hc /  = [6.6 x 10-34 J.s] [3 x 108 m s-1] / 700 x 10-9 nm
       = 2.83 x 10-19 จูล
โฟตอนของแสงสีม่วง มีพลังงานสูงกว่า โฟตอนของแสงสีแดง 1.75 เท่า






กฎของสเตฟาน–โบลทซ์มานน์ (Stefan-Boltzmann’s Law)
          ความเข้มของพลังงาน (Energy Flux) แปรผันตามค่ายกกำลังสี่ของอุณหภูมิ มีหน่วยเป็น จูล / ตารางเมตร วินาที หรือ วัตต์ / ตารางเมตร
F    =     T4
          F = ความเข้มของพลังงาน มีหน่วยเป็นวัตต์ / ตารางเมตร (W m-2)
           = 5.67 x 10-8 วัตต์ / ตารางเมตร K4 (W m-2 K-4)
          T = อุณหภูมิของวัตถุ มีหน่วยเป็นเคลวิน (K)
          ถ้าเราทราบว่า ความยาวคลื่นเข้มสุดที่ดาวแผ่รังสีออกมา เราก็จะทราบอุณหภูมิพื้นผิวของดาว (ดังตัวอย่างที่ 1) และเมื่อเราทราบอุณหภูมิพื้นผิวของดาว เราก็จะทราบว่า พลังงานที่ดาวแผ่ออกมานั้นมีความเข้มเท่าไร (ดังตัวอย่างที่ 3)
ตัวอย่างที่ 3: พื้นผิวของดวงอาทิตย์มีอุณหภูมิเฉลี่ย 5,800 K มีความเข้มของพลังงานเท่าไร
    F = T4
       = (5.67 x 10-8 วัตต์ / ตารางเมตร K4) (5800 K)4
       = (5.67 x 10-8 วัตต์ / ตารางเมตร) (1.13 x 1015)
       = 64,164,532 วัตต์ / ตารางเมตร






ความสัมพันธ์ระหว่างพลังงานและระยะทาง
          ในการแผ่รังสี คลื่นแม่เหล็กไฟฟ้าแผ่ออกจากจุดกำเนิดทุกทิศทุกทาง เปรียบเสมือนทรงกลมที่มีจุดกำเนิดเป็นจุดศูนย์กลาง โดยเมื่อพลังงานแพร่ออกไป ความเข้มของพลังงานจะลดลงไปเท่ากับ หน่วยของระยะทางยกกำลังสอง ดังที่แสดงในภาพที่ 2

ภาพที่ 2 กฏของสเตฟาน–โบลทซ์มานน์







กฎระยะทางผกผันกำลังสอง
F1 / F2 = (D2 / D1)2

          F1 = ความเข้มของพลังงาน ณ ระยะทางที่ 1
          F2 = ความเข้มของพลังงาน ณ ระยะทางที่ 2
          D1 = ระยะทางจากจุดกำเนิดถึงระยะทางที่ 1
          D2 = ระยะทางจากจุดกำเนิด ถึงระยะทางที่ 2
          ตัวอย่างที่ 4  แสดงให้เห็นว่า ดวงอาทิตย์มีรัศมี 694 ล้านเมตร พื้นผิวของดวงอาทิตย์แผ่รังสีด้วยความเข้ม 64 ล้านวัตต์ / ตารางเมตร แสงอาทิตย์เดินทางมายังโลกเป็นระยะทาง 149.6 ล้านกิโลเมตร ซึ่งมีระยะห่างมากกว่ารัศมีของดาวอาทิตย์ 216 เท่า ทำให้แสงอาทิตย์มีความเข้มน้อยลง (216)2 เท่า ดังนั้น แสงอาทิตย์ตกกระทบบรรยากาศชั้นบนของโลกด้วยความเข้มเพียง 1,370 วัตต์/ตารางเมตร
ตัวอย่างที่ 4: พลังงานที่พื้นผิวของดวงอาทิตย์มีความเข้ม 64 ล้านวัตต์ / ตารางเมตร อยากทราบว่า พลังงานจากดวงอาทิตย์ที่ตกกระทบบรรยากาศชั้นบนของโลก จะมีความเข้มเท่าไร
    F1 = ความเข้มของพลังงาน ณ บรรยากาศโลกชั้นบน
    F2 = ความเข้มของพลังงาน ณ ผิวดวงอาทิตย์     = 64,000,000 วัตต์/ตารางเมตร
    D1 = รัศมีของวงโคจรโลกรอบดวงอาทิตย์         = 149.6 x 109 เมตร
    D2 = รัศมีของดวงอาทิตย์                      = 694,000,000 เมตร
    F1 = F2 (D2/D1)2
    F1 = (64 x 106 วัตต์/ตารางเมตร) (694 x 106 เมตร / 149.6 x 109 เมตร)2
       = 1,370 วัตต์/ตารางเมตร







สรุปกฎการแผ่รังสี
    1.คลื่นแม่เหล็กไฟฟ้าเคลื่อนที่ในอวกาศด้วยความเร็ว 300,000 กิโลเมตร/วินาที
2.คลื่นสั้นมีความถี่สูง คลื่นยาวมีความถี่ต่ำ
3.วัตถุทุกชนิดที่มีอุณภูมิสูงกว่า 0 K (-273°C) ล้วนมีพลังงานภายในตัว และมีการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า
4.วัตถุที่มีอุณหภูมิสูง ย่อมมีการแผ่พลังงาน (อัตราการไหลของพลังงาน) มากกว่าวัตถุที่มีอุณหภูมิต่ำ
5.พลังงานของโฟตอนแปรผันโดยตรงกับความถี่ (E = h)
6.พลังงานของโฟตอนแปรผกผันกับความยาวคลื่น (E = hc /)
7.วัตถุที่มีอุณหภูมิสูงแผ่รังสีคลื่นสั้น วัตถุที่มีอุณหภูมิต่ำแผ่รังสีคลื่นยาว
(max    = 0.0029 / T)
8.ความเข้มของพลังงานแปรผกผันกับหน่วยของระยะทางยกกำลังสอง (F1/F2 = (D2/D1)2)





การคำนวณหาพลังงานจากดวงอาทิตย์
   1.Spectrum จากดวงอาทิตย์ มีความยาวคลื่นที่มีพลังงานสูงสุดmax   = 500 นาโนเมตร กฎของเวน T = 0.0029 / max ทำให้ทราบค่าอุณหภูมิพื้นผิว = 5,800 K ........(ตัวอย่างที่ 1)
2.กฎสเตฟาน-โบลทซ์มานน์ F =    T4  
ทำให้ทราบค่าความเข้มของพลังงานที่พื้นผิว = 64 ล้านวัตต์/ตารางเมตร ........(ตัวอย่างที่ 3)
3.กฎระยะทางผกผันกำลังสอง F1 / F2 = (D2 / D1)2 ทำให้ทราบค่าความเข้มของพลังงานที่ตกกระทบบรรยากาศของโลก = 1,370 ล้านวัตต์ / ตารางเมตร ........(ตัวอย่างที่ 4)















2 ความคิดเห็น:

  1. คลื่นแม่เหล็กไฟฟ้าแต่ละชนิดมีลักษณะอย่างไร ช่วยหาคำตอบหน่อยค่ะ

    ตอบลบ